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ABSTRACT.

Since the class of extended decreasing failure rate (EDFR) life distri-

butions (i.e., distributions with support in [0o,-]) is compact and convex,

it follows from Cnoquet's Theorem that every EDFR life distribution can be

represented as a mixture of extreme points of the EDFR class. We identify

the extreme points of this class and of the standard class of decreasing

failure rate (DFR) life distributions. Further, we show that even though

the convex class of DFR life distributions is not compact, every DFR life

distribution can be represented as a mixture of extreme points of the DFR

class.
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1. Introduction and Summary..
""V ':- J ,-4 tq

The class of decreasing failure rate (DFR) distributions plays an

important role in the theory and application of reliability, biometry, and

other fields of statistics. (See, e.g., Barlow and Proscnan, 1975, Chaps.

3 and 4, and Proscian, 1963).

Such distributions govern the lifelengtns of systems which do not

age adversely over time in the sense that the conditional survival proba-

bility given the age of the system is an increasing function of the age.

For example, DFR distributions overi, the lifelengths (i) of metals sub-

ject to "work-hardening", (ii) of many solid state components, (iii) of

businesses, (iv) of mixtures of exponential distributions, etc.

The DFR class is convex, as is the class of extended decreasing failure

rate distributions (EDFR) which contains distributions placing mass at .

Tiis latter class is also compact in the topology of weak convergence of

probability measures. (See Section 2.)

From the :'rei: -Milman Theorem and Choquet's Theorem, we know that the

basic building blocks of convex compact sets are their extreme points. In

particular, it follows from Choquet's Theorem, stated in Section 2, that

the set of extreme points is the smallest set of EDFR distributions with

the property that every hDFR distribution may be represented as a mixture

of its elements.

The main purpose of this paper is to identify the extreme points of

the EDFR class (Section 3). They are those EDFR distributions having

failure rate functions whose derivatives are close to zero in an appropiate

sense. More specifically, an EDFR distribution F is not an extreme point of
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the EDFR class if and only if (i) 0 < F(O) < l, (ii) 0 < F(-) < 1, or

(iii) the denivative of the failure rate function is a.e. uniformly

bounded away from 0 in some interval (see Theorem 3.1).

Since the DFR class is an extremal subset of the EDFR class, it

follows that a distribution F is an extreme point of the DFR class if and

only if F is an extreme point of the EDFR class and it places no mass at

. Thus the extreme points of the DFR class are also identified (see

Corolla ,y 4.2).

In Theorem 4.5 we show that even thougii the convex class of DFR

distributions is not compact, the set of extreme points of this class is

the smallest set of DFR distributions with the property that every DFX

distribution may be represented as a mixture of its elements.
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2. Preliminaries.

Let F be an extended life distribution; i.e., F is a distribution

function possibly placing mass at - such that F(O-) 0 0. When an extended

* life distribution places no mass at -, it is simply called a life distri-

bution. The function F = 1 - F is called the survival probability, and

f = -n F is called the hazard function. If RF is absolutely continuous

on every closed interval contained in (Or), then any measurable function

r F almost everywitere (a.e.) equal to R., the derivative of R., is called

a failure rate function. (Througnout, measureable means Borel measureable

and all measures are Borel measures). When F has a density f, tne failure

rate function rF = f/F-a.e. . When the distribution F is clearly under-

stood, the subscript f will be suppressed.

Definition 2.1. Let F be an extended life distribution. Then F is

said to be an extended decreasing failure rate (EDFR) distribution if R

is concave on (0,-). If an EDFR distribution is a life distribution, it

is simply called a decreasing failure rate (DFR) distribution.

The set of EDFR distributions will be denoted by V. An EDFR distri-

bution F can have no jump on (0,-) since R is concave on (0,-), but can

have a jump at 0. Also, notice that we consider 6., the distribution

degenerate at 0, to be an EDFR distribution. The hazard function of an

EDFR distribution other than 6 is finite and concave on (0,-). Conse-

quently it is absolutely continuous on every closed interval of (0,-) and

has a right _.,rivaiv which exists everywhere on (0,-). In the remainder

of this paper the failure rate function of an EDFR distribution other than

60 is always taken to be this right r'iv:iV. and is, therefore, a de-
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creasing function on (0,-) with -k:iViL!., a.e. less than or equal to

zero. For convenience we shall define r to be identically zero when F 6o

Lot L denote the class of extended life distributions, and o(L)
0

denote the smallest a - field of subsets of L such that the map F-->F(t)

from L into [0,1 is o(L) - measurable for all t e [0,-J.

Definition 2.2. An extended life distribution F is a mixture of

elements in a set S e L if S e o(L) and there is a probability measure F

defined on a(L) such that

(3.1) lIF(S) = 1

and

F(t) = fG~tjF~dG) for all t c LO,-].

When (3.1) holds, u is said to have support S.

Remark 2.3. It can be shown that a(L) is the Borel a - field of L,

when L is given the topology of weak convergence of probability measures.

In particular, U i a Borel measure.

We recall that an element x of a convex set K is an extreme point of

K if x = py + (l-p)z with y, z, e K and p c (0,1) implies that y - z = x.

We need Choquet's Theorem, stated below, to show that every EDFR life

distribution can be represented as a mixture of extreme points of the

EDFR class.

Choquet's Theorem (Phelps, 1966, pp. 19-20). Let K be a metrizable,

compact, convex subset of a locally convex space X. Let x0 c K. Then there

is a probability measure p supported by the extreme points of K such that

L(x) fL(x)px (dx)

.



for all continuous linear functionals L defined on X.

In this paper we take X to be M[O,-,] the space of finite signed

measures on [0,-1, with the topology of weak convergence, and K to be D.

It is well known that with the above topology, M[O,-J is locally

convex and D is metrizable, a convenient metric being the Livy metric. An

argument using Helly's Compactness Theorem and the fact that pointwise

limits of concave functions are concave shows that D is compact. The con-

vexity of D follows since the family of positive log-convex functions is

closed under addition and multiplication (see Roberts and Varberg, 1973,

Section 13).

To see that every EVFR can be represented as a mixture of extreme

points of D, we notice that L:N[O,] --> R defined by L(v) =ff(x)v(dx) is

a continuous linear functional on M[O,-J for each f i C[0,-]. Hence the

conclusion of Choquet's Theorem implies that for every EDFR distribution F

there exists a probability measure, p., supported by the extreme points of

D such that ff(x)F(dx) - f[ff(x)G(dx)p F(dG) for all f e CEO,-]. Since

C[0,-3 is a separating class of functions (see Breiman, 1968, p. 165) we

have that F(t) = fG(t)v F(dG) for all t e [0,-J. Equivalently, by Remark 2.3,

every EDFR distribution is a mixture of extreme points of D. Furtner, by

the definition of extreme point, we see that the set of extreme points of

D is the smallest set of EVFR distributions with the property that every

EDFR may be represented as a mixture of its elements.

We identify the extreme points of V in the next section.
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3. The Extreme Points of the EDFR Class.

In this section we identify E, the set of extreme points of D. In

essence, we show that an EDFR distribution F is not an extreme point of

0 if and only if either (i) 0 < F(O) < 1, (ii) 0 < F(-) < 1, or (iii)r',

the derivative of the failure rate function, is a.e. uniformly bounded away

from 0 in some interval. More precisely, we show the following theorem.

Theorem 3.1. The EDFR distribution F is an extreme point of the set

of EDFR distributions if and only if either (i) F is degenerate at 0, or

at -, or (ii) F(O) = 0, F(--) = 1, and {t: r'(t) exists, a ! t 5 b, and

r'(t) > - 6) has nonzero Lebesgue measure for all 0 < a < b and 6 > 0.

Let 6, denote the distribution degenerate at '.

Remark 3.2. The degree of smoothness of r for F e E characterizes

certain types of extreme points. For example, let F c E\{6 0 ,6.1. Then (i)

r' is continuous if and only if F is an exponential distribution, and (ii)

r' has a countable number of isolated discontinuities if and only if F is

piecewise exponential, that is, R is piecewise linear. We remark that the

EDFR piecewise exponentials are dense in D. This example therefore shows that

E is a dense subset of 0.

Two other types of interesting life distributions which are extreme

points of V are given below. These life distributions are extreme points of

0 since their failure rates are decreasing functions with derivatives almost

everywhere equal to 0. Notice that the failure rate function in (iii)

below is discontinuous in a countable dense subset of [0,-) while the fail-

ure rate function in (iv) below is continuous everywhere on [0,-).
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(iii) Let "zi l be a countable dense subset of [0,-) and

{b =be a sequence of positive numbers such that Eb. < and
-ftr(u)du

Ea.b. =. For t 0, let r(t) - b I Then F(t) 1 - e
j j {a. ;t1

is an extreme point of V since r' = 0 a.e. on [0,-), F'0) = 0, and F(--) = 1.

(iv) Let r(t) be positive, decreasing, continuous, and singular (with

respect to Lc" 3sgue measure). Further assume that for(u)du = -. Then

r'= 0 a.e. on [0,-), F(O) = 0, and F(--) = 1. Consequently,

ftr(u)du

F(t) 1 - e .;. an extreme point of D.

In proving Theorem 3.1, ive use tne following notation. For each

F e D let E = (t: rF exists at t1. Denote the Lejesgue measure by m. Let

0 S {F e V\{6 ,6,}: m(t c EF: a : t -< b and r'(t) > - 6) > 0 for all

0 < a < b and all 6 > 01. Let = {FEI.: F(O)=O and F(m-)=l1, i.e., C is

the class of life distributions which place no mass at 0.

In this notation, Theorem 3.1 is equivalent to

(3.1) E = (One) u {6, 6}.

W- prove (3.1) by showing (i) E c 0 u {6o,6.) (Lema 3.3), (ii) E c C u {6o ,6'.}

(Lemma 3.'), and (iii) E : (0 n C) u {6o,6 . ) (Lemma 3.5).

Lemma 3.3. E c 0 u {6o,)

Pro,". It is co ,c L,at iz '.- e D and F j 0 u {6o,6}, then F j E.

To prove a- j E, it suffices to show that there exist F1 and F2 e V such that

(F1+F2)/2 = F.

Let F e V and F 4 0 u {6o ,6.1. Then there exists an interval [a,b],

(O<a<b), and a value 6 > 0 such that r'(t) < - d a.e. on [a,b]. Without

loss of generality, we may assure that r is continuous at a and b. For each

... -J3 ,,.'- L.. ._ ,~.-_,,_ ...... . 2.G, ._ ... i II... ,.. . ... .==,
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postitive integer n, let t,(x) be I --x-a) 3(b-x)3 for a 5 x < b and 0

otherwise.

Choose n so that sup t Ln 2. Let R R - t and letn n I n
nR2 - R + c(t,), where c(x) - -ln(2-e x) for x < In 2. We show that for

n sufficiently large, say n - no, Fi  l-exp{n Ri) (1=1,2) are two different

well-defined EDFR distributions such that (FI F2)/2 - F.

Since R is concave on (0,-), it follows that r and r' exist a.e. on

[0,-). Further a.e. on [0,-), we have that

n R1 r - 1,

nn A

R" a r' - t" andn I n,

R" - r' + c'(t ).t" + c"(1 )2.
n 2 n n n

Since r'(t) < 6 a.e. on [a,b], from the continuity of c' and c", it

follows that for n sufficiently large, say n = no, noRi(t) < - 6/2 a.e. on

ab](iml,2). Thus, writing R. for n Ri(iml,2), we have that R. is strictly

concave on £a,b]. We notice that R and R. and also their derivatives agree1

off (a,b). Thus Ri is an increasing function on [0,-), is concave on (0,-),
-Ri

and satisfies Ri(--) =  It follows that F. = 1 - e (i=i,2) are two

different well-defined EDFR distributions.

We show that (F1+F2)/2 - F. By the definitions of c, RI, and R2, we

see that
(R-R1)

R2 a R - n. (2-e )

Hence

A *A (R-R 1 ) -R _
e 2  e e (2-e )=2e -e

Thus

ae-R a CeR 1 0 _R 2)/2 - (F14 2)/2. I
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Lemma 3.4. E c C u {6 0'50).

Proof. Let F c C u{ U 0 ,6 ). Then either (i) F (0) = a, where

0 < a < 1, or (ii) F(-) u B, where 0 < 8 < 1. Assume (i) holds. Then

F F-FU° C Since F, = 6 andF F ( are both DFR

o 0 1-F()1 o - l-F(0)

.if - -,uti.ns, F 4 E. A similar argument shows F % E when case (ii) holds.

Lenma 3.5. (0 n C) u (6 o6 . ) c E.

Proof. Let F c (0 n C) u {6o,6.). We show that F e E. If F - 6 or
0 0

6., then clearly F c E. Assume then that F c 0 n C. Since D is convex, it

suffices to prove that

(3.2) F = (FI+F 2)/2 with F1 , F2 E D

implies that

(3.3) F = F = F.1 2

Thus assume (3.2) holds. We show (3.3) follows.

For the distribution F. (i=1,2),let r. be the failure rate function andi i

R. be the hazard function. Let t e M S {t: rI and r' exist at t}. Since
i 1l 2

mQA') = 0 and F e 0, it follows from the definition of 0 that for each

positive integer n,

mCEt,t~n"I1] n M n (t: r'>-n-l}) > O.

Hence we may choose a sequence t n } c M such that t n - t and r'(tn) n 0

as n By a subsequence argument we may also assume that the sequences

(rl(tn)} and (rC(tn)) both have limits (possibly infinite). Now reversing

the steps in the last paragraph of the proof of Lemma 3.3 we can show that

(R2 -R)(t n) ac((R-R )(tn)), where c(x) E -ln(2-e ) for x < In 2. Differ-
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entiating twice and taking limits, we get

(3.4) lir r (tn) a -c'((R-R,)(t)).(lim rCtn)
2 (tn2
"((R-RI) (t)). (r(t)-rl~t)) 2

since r'(tn) n 0 and tn P t as n * and R, RI, r, and rI are continuous at t.

Now for x < In 2, c'(x) - eX/( 2 - ex) > 0 and c"(x) - 2eX/(2-eX) 2 > 0.

Hence, using the fact that lir r (tn) : 0, we see that the expression on the

right of (3.4) is nonnegative. Since the term on the left of (3.4) is non-

positive, it follows that the expression on the right of (3.4) is equal to 0.

We conclude that r(t) = r1 (t) for t e M. Reversing the roles of R and R2

above, we get r(t) = r2 (t) for t c M. Thus

(3.5) r a r 1  r 2 a.e. on [0,-).

Now F(0) = 0 implies that F1(0) - F2 (0) = F(0) and, consequently, that

R(O) - R1 (0) R2 (0). It follows by (3.5) that R - R1 = R2 or, equivalently,

that F F F

2

|I
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4. Convex Extremal Subsets of P.

In this section we identify the extreme points of two convex sub-

classes of D, namely, (i) Dp, the class of (proper) DFR distriLutions

(Corollary 4.2), and (ii) P = (F4:rF is continuous on (0,-)) (Corollary

1.3). In addition in Theorem 4.5, we show that every DFR life distribu-

tion can be rcpre~ented as a lixture of the extreme points of P

To identify the extreme points of P and D we need Lemma 3.1 below
p C

concerning extre.ial subsets. Recall that a subset K' of a convex set K

is an extremal subset c:F K if x = py + (l-p) z with y, z e K and p e (0,1)

implies that y ard z a.'e in K'.

Let ext K denote the set of extreme points of K.

Lemma 4.1. Let K' be a convex ex'remal subset of a convex set K. Thoa.

ext K' = K' n e;.t K.

'e c;mit ti'e elemetary proof of this fen.ia.

Fruv Lem..- 4.1 it follows that to identify the extreme points of P

andD C is is only necessary to show that these classes are convex extremalC(
Since it is i!;.ediate that P is a convex extremal subset of D, we

have the following corollary of Lemma 4.1.

Corollary 4.2. The PriR distribution Y' is an extreme point of the DFR

class if and only if either (i) F is degenerate at 0, or (ii) F(O) a 0

and {t: r'(t) exists, a : t ! b, and r'(t) > - 6' has nonzero LkUus)u.

measure for all 0 < a < b and 6 > 0.

To show that DC is an extremal subset of P we need the following

lemma. .et r, rI, and r2 be the failure rates of F, F,, and F2 .
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Lemma 4.3. Let F = pF1 + (I-p)F2 for some p c (0,l) and F1 , F2 1 D.

Let r be continuous at t. Then rI and r2 are continuous.

Proof. Assume that either r1 or r2 is not continuous at t. We

show that this contradicts the of i att.

Since r1 and r2 ars decreasing and F1 and F2 are continuous on (0,-),

then

r (t+) = [ -l(t)]l[Prl(t )Fl(t) + (l-p) r2 (t+)F2 (t)]

<[Ft)]-1 Epr(t-)F(t) + (l-p) r2 (t-)F 2(t)] -r(t-),

which contradicts the continuity of r at t. I

It is clear from Lemma 4.3 that P is an extremal subset of D. Also
C

a straightforward argument similar to that in the proof of Lemma 4.3

shows that DC is convex. Hence we obtain the following corollary of

Lemma 4.1.

Corollary 4.4. The set of extreme points of DS is E n VS .

Remark 4.5. Let V {FPP: rF is absolutely continuous on every
AF

closed interval contained in (O,-)). It can be shown that DA is also a

convex extremal subset of D, and consequently that ext DVA = E n DA '

.!e conclude this section with the following representation theorem

for the DFR class.

Theorem 4.5. The life distribution F is DFR if and only if F may

be represented as a mixture of distributions in ext VP. Further ext P

is the smallest set with the property that every DFR may be represented

as a mixture of its elements.

Proof. Let F e P. Then F e D and, therefore, by the resalt stateu

P.a



I in the next to the last paragraph of Section 2, we have that

F(t) = fG(t) uF(dG) for all t c [0,-], where PO is a probability measure

such that F (E) = 1. Since F(--) = 1 by the Bounded Convergence Theorem,

I * fG(--) pF (dG). Hence uF(EnVp) P UF(GEE:G(-.) - 1) 1 1. Since

ext Dp = E n Dp by Corollary 4.2, the conclusion of the first part of

Theorem 4.5 follows. The second part of Theorem 4.5 is an immediate

consequence of the definition of an extreme point. II

I
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